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Introduction

In July 1986, Reserve Environmental Services (RES) installed a Class-I waste-
injection well, and began operations on the east side of the town of Ashtabula, Ohio. The
injection well was about 1.8 km in depth and operated at a nearly uniform flow rate of
114 L/min and at an injection pressure of about 100 bars (Nicholson and Wesson, 1990).
Between July, 1986 and July 1987, nearly 62 million L of waste was injected into the
“Mt. Simon” Sandstone at a surface pressure of 10 MPa (Evans). On July 13,1987,a3.8
M earthquake occurred just east of Ashtabula and was followed by a large number of
aftershocks, approximately 70 of which were recorded (Table 10). The epicenter of the
mainshock was less than 1 km from the RES well. All of these earthquakes were located
in a narrow cluster on an east-west-striking vertical fault about 1.5 km long that extended -
from 1.6 to 3.2 km in depth (Armbruster and others, 1987; Seeber and Armbruster, 1993).

This began a 14-year sequence of seismicity in the Ashtabula area. From 1987 to
2001, more than 100 earthquakes with magnitudés between 1.2 to 4.5 mbLg have been
recorded by seismic networks in Canada and Ohio. No historic earthquakes are known to
have occurred within 30 km of Ashtabula (Nicholson and Wesson, 1990; Seeber and
Armbruster, 1993). This, coupled with the proximal location of numerous earthquakes
near the well after it was installed, suggests that this seismicity has been induced by the
injection fluid from the RES well.

Opposition to this interpretation has been stated by Gerrish and Nieto (MS, 2003)
who suggest that the seismicity is not related to fluid injection for the reasons that 1. The
earthquakes are not clustered but random, and 2. The injection pressure was not sufficient

to cause failure on favorably oriented faults. The objective of this project is to address



reason 1 by relocating the published earthquake epicenters in order to observe any
association, or lack thereof, with the RES well. By doing these relocations with multiple
seismic networks, we should see a reduction of the error ellipse inherent in doing initial
earthquake locations with a single network.

It is important that we understand the mechanisms of induced seismicity in order
to understand the dangers that are involved by triggering earthquakes. By examining this
sequence of earthquakes, I hope to gain valuable insight into the pattern of earthquake
epicenters. Their pattern near the vicinity of injection wells and their correlation to the
regional geologic and tectonic setting is of great importance in earthquake hazard

mitigation.



Geologic and Tectonic Setting

The Precambrian basement of northeastern Ohio consists of crystalline rocks of
the Grenville province (fig. 1). This province represents the remnants of an orogenic
event known as the Grenville orogeny, which occurred approximately one billion years
ago, as the result of continental collision on the eastern edge of Laurentia, the landmass
containing present day North America (Hansen, 1996). The basement is unconformably
overlain by gentle east-dipping Paleozoic strata at a depth of approximately 1.8 km in the
vicinity of Ashtabula. |

For much of eastern North America, the direction of maximum horizontal stress,
(0_1,S_nmax), is consistent (fig. 2). This stress field has been attributed primarily to plate
motion or stress from the Mid-Atlantic Ridge (Sbar and Sykes, 1973; Zoback, 1992). In
the region of this study, northeast Ohio, the direction of o_1 is 74° (fig. 3) (Plankell,
2000). The best evidence of this stress has been demonstrated by the large number of
earthquakes that have been recorded in the area near Ashtabula (fig. 4). Earthquake focal
mechanisms are the primary tool for determining the orientation of maximum horizontal
stress in seismically active areas. This seismicity is due in large part to reactivation of
ancient deep faults due to this stress field (Lucius and Von Frese, 1988). These rocks are
thought to be at or near failure and thus capable of producing earthquakés on faults
. oriented favorably with 6_1. These earthquakes have been shown, from precise location
determinations by locally deployed portaﬁe seismometers, to be located along east-west-
striking vertical faults. The earthquakes of 1987 were confined to an area about 1.5 km

long by 0.25 km wide at a depth of 2 km (Hansen et. al., 2001). The sense of the



movement on these faults was left-lateral strike-slip (Seeber and Armbruster, 1987, 1993)

(fig 5).
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Figure 1. Basement structures in Ohio (modified from Division of Geological Survey Digital Chart and
Map Series No. 7, 1991). This map portrays a number of deep faults and other structures that have been
identified by a variety of geologic studies. Some faults are well known, whereas others are speculative.
Very few of them are visible at the surface. The Anna, or Fort Wayne, rift in western Ohio is the site of
numerous historic earthquakes.
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Figure 2. Orientation of principle stress for North America. From The World Stress Map Project.
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Figure 3. Regional map of eastern North America with superimposed rose diagrams showing structural
orientations for 6 sub-regions. Dashed lines on rose diagrams represent +/-25° error associated with stress

orientation (black arrows), solid lines represent 50° interval of preferred structural orientation. (Plankell,
2000).
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Figure 4. Map of earthquake epicenters in Ohio and adjacent areas.
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Figure 5. Accurate hypocenters and first motions in Ashtabula, Ohio from two short-term deployments of
portable seismographs. Data from 1987 illuminated a vertical east-west-striking left lateral fault in the
basement (Seeber and Armbruster, 1993). This activity was 0.7 ~ 2.0 km from the RES well (star) and
started one year after the onset of injection. Several episodes of felt earthquakes during the following years
were not monitored by local instruments. An mbLg 4.3 mainshock on 25 January 2001 caused light
damage (MMVI). The focal mechanism and epicenter of this event were obtained from regional
waveforms. Another fore-main-aftershock subsequence during June 2001 was captured with a local
network. These data illuminate another fault (thick line is fault trace at unconformity) similar to the one in
1987, but 4 km south. The January 2001 mainshock is probably also from this source. The two dotted first
motions are from the latest and westernmost hypocenter and are inconsistent with the composite focal
mechanism. (Seeber, Armbruster, Kim).



History of Seismicity

There are four anomalous aspects of the Ashtabula sequence that are very
important to the conclusion of the origin of the seismicity: 1) Lack of demonstrable
seismicity at Ashtabula prior to 1987. 2) Hypocentral depths of Ashtabula events at, just
below, or just above the Precambrian/Paleozoic unconformity (associated with injection
depth). 3) Abundant aftershock swarms, many of them felt, following comparatively
small mainshocks. This is uncharacteristic of natural earthquakes in the region. 4)
Presence of basement/Lower Paleozoic faults in the region where sufficient data are

available (Hansen, 2003).

The 1987 Sequence

Ashtabula is located on the eastern North American platform and is considered to
be in a stable continental region. As stated previously, no earthquakes have been
recorded or are thought to have occurred within 30 km of Ashtabula prior to 1987, only
one year after the beginning of fluid injection at the RES well. Furthermore, there is no
evidence for séismicity near Ashtabula prior to 1987 despite intensive searches for .
historic data (Seeber and Armbruster, 1993; Hansen, 2003). Following the July 13, 1987
earthquake (3.8 mbLg),- as many as 36 aftershocks were recorded by Lamont-Doherty
Earth Observatory (LDEO) during a ten day period following the mainshock (Seeber and
Armbruster, 1993) (fig. 6). These earthquakes were monitored with portable
seismometers distributed throughout the city of Ashtabula. Seismometers from the John
Carroll University seismic network, operating southwest of Ashtabula, recorded the
larger events also, as too did the Geological Survey of Canada. These networks also

recorded other sequences of earthquakes in 1990 and 1992, though some of these are




thought to be associated with the Akron Magnetic Lineament (fig. 1). Northeast Ohio
seismicity correlates spatially with the prominent Akron Magnetic Lineament, which
coincides with a portion of the Akron Magnetic Boundary, a region that probably reflects
different lithologies in the Precambrian basement (Seeber, and Armbruster, 1993). Other

earthquakes recorded in the region occurred in 1995 and 2000 as well.
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Figure 6. Histogram of seismicity at Ashtabula. Data from the local network by LDEO above and data
from JCU below.
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The 2001 Sequence
On January 20, 2001, a small (2.0 mbLg) foreshock was followed by a 4.5 mbLg

mainshock on January 26. This event resulted in about 50 reports of minor-to-moderate
damage in Ashtabula, including breakage of two natural gas lines. The area affected by
the earthquake was large (fig. 7) and was felt as far north as Ontario Canada. Isoseismal
maps prepared by Margaret Hopper of the U.S. Geological Survey show the northward
propagation of energy into Ontario (fig. 8). With the recent (1999) installation of the
Ohio Seismic Network, the 2001 events were able to be determined even more precisely.
These events had epicenters approximately 4.5 km south of the 1987 earthquakes; a
location confirmed by another deployment of portable instruments from Lamont-Doherty
for the June 3 aftershock (fig 6). The depths of these earthquakes were confirmed to be
'about 2.1 - 2.5 km in depth and situated on an east-west-oriented strike-slip fault (Hansen
et. al., 2001; Seeber and Armbruster, 2004). There is considerable attenuation of seismic
energy south into Ohio, along with a strong propagation of energy northward into

Canada. The cause of this phenomenon is unknown.
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Figure 7. Modified Mercalli Intensity felt report area for the January 25, 2001 4.5mbLg mainshock. For a
description of the Modified Mercalli scale, see appendix A.
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Figure 8. Isoseismal map for the January 25, 2001, mainshock at Ashtabula. The map depicts areas of
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Ashtabula. Map prepared by Margaret Hopper of U.S.G.S. Canadian intensities courtesy of Sylvia Hayek
of the Geological Survey of Canada.
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High-Pressure Fluid Injection
Flow in porous media

Fluids such a water, petroleum, and natural gas often flow through the Earth’s
crust. These fluids mainly flow through the interconnected passages of porous media
such as sandstone and limestone and through fractures in these same rocks. For rocks
that are not naturally porous, they can still be considered porous if they are extensively
fractured. These fluids can flow through a porous medium under the influence of an
applied pressure gradient. For laminar flow, which is characteristic of groundwater, the
flow rate is linearly proportional to the pressure gradient and inversely proportional to the

viscosity (Turcotte and Schubert, 2002).

The RES well

The RES well is located at 41.9078° N and 80.7322° W. The company began

injecting 3.4 x 10% m3 of calcium chloride brine, with a viscosity of 1.5 centipose at

reservoir temperature (Gerrish and Nieto, 2003), into the base of the Mt. Simon
Sandstone at a depth of approximately 1.8 km in May 1986 (fig. 9). Injection ceased on
J une 20, 1994. By the time the well ccaséd operations, the pressure increase was 8.53
MPa above the pressure before injection of 18.84 MPa (Gerrish and Nieto, 2003).
Estimates of stress inferred from commercial hydrofracturing measurements suggest that
the state of stress in northeast Ohio is close to the theoretical threshold for failure along
favorably oriented faults. It has been suggested that nominal.ﬂuid injection pressures of
as little as 11 MPa, in the zone immediately surrounding the well bottom would be in a

critical stress state for favorably oriented fractures (Nicholson and Wesson, 1990).
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Increasing pore fluid pressure quickly reduces the shear strength of rock. The simple
Coulomb failure criterion, which presumes the effective normal stress acting on the fault,
is given by the total normal stress minus the pore pressure and may adequately describe

the shear strength of faults (Evans).
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Figure 9. Section running north-south from Lake Erie showing depth of injection and local stratigraphy.
(Evans).
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Analytical Procedure

The main goal of this work was to relocate epicenters of approximately 36
earthquakes above 2.0 magnitude that occurred in the Ashtahula region from 1987 to
2001 (Table 1). These events were initially located separately by at least two seismic
networks each. The events from 1987 through 1990 were located by the Geological
Survey of Canada (GSC), the John Carroll University Seismic Network (JCU), and the
U.S. Geological Survey (USGS) and by portable seismometers installed by The Lamont-
Doherty Earth Observatory (LDEO). For events from 1992 through 2000, the only data
available were those from GSC and LDEO. From 2000 to 2001, data from The Ohio
Seismic Network (OSN) were also available. For this thesis, only data from GSC, JICU
and LDEO were used; however, for comparative purposes, epicenter locations from OSN
have been introduced. For this study, I did not re-pick phase arrival times; they are
original th the seismic networks that published them.

LDEQO locations are the most precise because the portable seismometers were
located in proximity to the mainshocks and were sensitive enough to detect numerous
microearthquakes. Locations for individual earthquakes, determined by other seismic
networks, have been inconsistent. For example, GSC locations for the Ashtabula
earthquakes are all farther to the north than determined by the LDEO portables. The
locations given by JCU correspond well with LDEO locations, but a few are farther to the
west. These biases are mostly due to the large azimuthal gaps associated with network
geometry. The locations of JCU instruments were to the west of Ashtabula, which would
tend to ‘pull’ the earthquake locations in that direction. The location of GSC instruments,

all to the north of Ashtabula, tends to ‘pull’ all of their locations to the north. It has also
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been suggested that tﬁe thinning of the Paleozoic rocks towards Canada and the
corresponding shallower crystalline basement rocks, having higher P and S wave
velocitiés, causes earlier than normal arrival times for these phases. This would cause the
.locations of the earthquakes to plot closer to Canadian stations and thus be inaccurately
located farther to the north. Another reason for the inconsistency may be due to the
difficulty of accurately determining the arrival of a wave phase amidst all the background
noise recorded at a seismic station. At long distances, wave attenuation can significantly
reduce the signal of the arriving phases, making it difficult to accurately pick the correct

arrival time.

The Double Difference technique

To combat the apparent discrepancy in epicenter locations, I utilized the Double
Difference technique of Waldhauser and Ellsworth (2000). This technique takes
advantage of the fact that if the hypocentral separation between two earthquakes is small
compared to the event-station distance and the scale length of velocity heterogeneity,
then the ray paths between the source region and a common station are similar along
almost the entire ray path (Frechet, 1985; Got et al., 1994). | The residual between
observed and calculated travel-time difference (or double difference) between two events
at a common station, are related to adjustments in the relative position of the hypocenters
and origin times through the partial derivatives of the travel times for éach event with
respect to the unknown. This approach is especially useful in regions with a dense

distribution of seismicity, such as northeast Ohio. Dr. Larry J. Ruff of the University of
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Michigan, seismic advisor to the Ohio Seismic Network, creéted a software program that
performs this operation; it is called Epirelocator.

The technique calls for calculating the time difference in same phase arrival times
for a common station for several different earthquakes, one a “Master’ and the rest
‘Slaves’ (tabies 2,4 and 5). For this technique, I designated a ‘Master’ earthquake by its
larger magnitude and its accurate location determination from LDEO portable
seismometers. The Master earthquake is the one in which all other earthquakes in that
vicinity will be located relative to. For common stations between the Master-Slave
events, I calculated the arrival time difference between the Master and Slave, seconds
only, for each phase, P and S. The average of these arrival times is then entered as the

origin time (OT) of the slave earthquake.

Ex.:

Station Phase Arrival time (s) At with Master Difference time (s)
Tyno Pg 36.21 -21.45 8.55

Tyno Sg 54.98 22.37 | 7.63

Acto Pg 12.01 -1545 14.55

Acto Sn 30.88 -15.22 14.78

If the slave — master time is negative, then add the same number of seconds to each At
with master time, to obtain a positive number (for the above example 30 seconds were
added to At). Then, take the average of the difference times and enter that as the origin

time for the master event. Once all station and phase arrival information is entered and
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processed a new location for the earthquake (latitude and longitude) is calculated. (Tables

2,4 and 5).
Correcting for residuals

As well as calculating a new location for the earthquake epicenter, Epirelocator
also calculates the travel-time residual for each wave phase: P, Pg, S, and Sg (Appendix
B). The residual is the time difference in seconds for the theoretical travel time, based on
the velocity model used, and the observed travel time. An ideal residual would be + 1.0 s
or less. For this study, in general, any residual that was much higher than + 1.0 was
rejected from the solution process. These high residuals were probably the result of an
erroneous pick, or a pick with poor quality, of the phase arrival time by the original
network.

I then decided to determine epicentral locations based on these residuals as well.
Adding these residual times to the original arrival times should give a more accurate
arrival time. These new arrival times, in seconds, were then entered into another similar
software package designed by Dr. Larry J. Ruff called Epilocator. These events were run
and processed giving new locations in latitude and longitude. (Tables 3, 6, and 7)

Ex:

Station/phase arrival time (s)  residual corrected arrival time (s)

Tyno Pg 4431 -0.09 44.22

Tyno Sg 58.55 0.16 58.71

For reasons not yet understood, this technique produced very erratic results in

epicentral locations (Tables 3, 6, and 7). There was no rhyme or reason to the locations
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produced using this technique. Further information and research should be conducted to
evaluate the validity of this approach. Unfortunately this is beyond the scope of this
thesis and therefore, these data have been omitted.
Plots of Epicentral Locations

The maps depicting epicentral locations, Maps 1 - 7, were created using the Arc
Map, GIS software package. Iused the Ashtabula North 7.5-minute quadrangle
topographic map overlain on a digital raster graph of a 3-D hill-shade map of the same
area. Latitude and longitude of the epicenters were entered into a spreadsheet and then
imported into Arc. For clarity, each event was then assigned a letter following the year
that the event occurred, for example, 1987-D (Table 9). If GSC and JCU both recorded
an event, the same letter was used between each network. Where several events occurred

at the same location, multiple letters have been designated for that point.
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Discussion

Plotting the epicentral locations from data obtéihed in this study indicates a few
trends. As suspected, most original JCU epicentral locations were ‘pulled’ to the west
toward their network and most GSC epicentral locations were ‘pulled’ to the north
toward their network. After doing the relocations, almost all of the new slave epicentral
locations were relocated closer to their respective master event (Maps 5 & 6). However,
there have been a few erratic epicentral locations produced and I have analyzed them to
try and determine the reason for this.

On Map 5, the following events were analyzed for their deviation from the trend
of the rest of the data: 1987 B, 1987 H, 1987 J, and 1990 T. The cbmmon trend for all of
these events is small earthquake magnitude, poor station coverage, geometry, and thus,
large azimuthal gaps. Each of these events was only recorded at 3 — 4 stations, which is
less than the common 5-station coverage for the other events. These aspects most likely
led to the erratic behavior of the solution process and thus epicentral locations determined
by the original network and by Epirelocator. We see on Map 6 that the only erratic event
recorded and shown was relocated farther away from the master event than GSC’s
original location (1987 D). It was determiried that the combination of high travel-time
residuals and poor station coverage (only 3 recording stations) led to the erratic location.
The original location of this same event by JCU places it very close to the master event
and the new location determined by Epirelocator from JCU data, put it at the master event
location.

The remainder of the earthquakes have been located more accurately and are

closer to their respective master event location. For the event from 1992, (1992 J, Maps
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4 & 6) the epicenter was relocated very far to the east from its original location
determined by GSC. The event labeled 1990 R is thought to be associated with the NE —
trending Akron Magnetic Lineament. ThlS event was also only recorded by 3 stations,
which may have led to a poor location solution. There are obvious error margins
associated with the actual location of earthquake epicenters. For this study, most error
ellipses, determined by Epirelocator, were oriented nearly NE — SW and their sizes are as
follows: 0 — 1km 31.60 %, 1 —2 km 36.84 %, 2 —3 km 10.50 %, 3 —4 km 10.50 %, 4 -5
km 10.50 % for the major axis, sigma 1 (Appendix C). The widths of the minor axes are
approximately 0.10 km to 0.68 km.

The new locations of the earthquakes determined by Epirelocator, fit the proposed
hypothesis. It was hypothesized that there would be a reduction of apparent epicenter
‘scatter’. Although the locations of the earthquakes may never be known precisely, the
relocation procedure places them, relative to their error ellipses, in a tight cluster near the
master events located on the strike-slip faults noted by Seeber and Armbruster (1993,
2004) (Figure 5). It can also be seen from Maps 2, 4 and 7 that there is an apparent
movement of earthquake epicenters away from the RES well with time. The epicenter
locations from 1987 seem to be closest to the RES well, within the error of margin.
Events in 1989 and 1990 are relatively in the samé area. It is too difficult to see the exact
distance these later epicenters have moved due to the error ellipses and the fact that there
may have been very little distance traveled by the fluid from the well in only two to three
years time. The 2001 events, are located farther to the south and west from the RES well

and the earlier events. This would suggest that the pressure front is moving
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predominantly to the southwest, and intersecting the two strike-slip faults identified by

Seeber and Armbruster (1993, 2004).

Conclusion and Future Studies

From these data, it is evident that previous epicentral locations were ‘scattered’,
but not for the reasons stated by Gerrish and Nieto (2003). It has been shown (Maps 5 &
6) that after performing relocations using the Double-Difference technique, the epicenters
are actually clustered in a smaller area near the precisely located master earthquakes.
This demonstrates the accuracy and validity of using this approach for finding earthquake
locations in areas of high seismicity. The apparent ‘scatter’ was due, in part to poor
station coverage, geometry, and azimuthal gap. Epicenters were consistently relocated
closer to the master events and thereby have shown a reduction of ‘scatter’. These groups
of epicentral locations are tight, within their error of margin, except for those thought to
be associated with the Akron Magnetic Lineament. |

There is a large amount of seismic data»for this region that could also be analyzed.
It would be beneficial for future studies of these data to be incorporated into this research.
Also, by combining the phasé arrival time data for each earthquake from multiple seismic
netwofks into Epirelocator, further reduction of the error ellipses associated with
epicenter locations could be achieved. This would most likely happen since the station
coverage for each earthquake would increase substantially resulting in a smaller
azimuthal gap and better station geometry. Unfortunately for this thesis, I did not have

time to do this.
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Earthquakes on the Akron Magnetic Lineament are associated with NE — SW
strike-slip faulting whereas those in the immediate vicinity of Ashtabula are occurring on
E — W strike-slip faults (Seeber ana Armbruster, 2004). The Akron Magnetic Lineament
has generated a few earthquakes in the past (Hansen, 2002). The earthquakes on March
26, 28, and 31, 1992 (Table 1) appear to be northwest of Ashtabula and are thought to be
associated with the Akron Magnetic Lineament. The event on March 15 at 06:13, labeled
1992 J, was originally located considerably west of Ashtabula by GSC. Relocation of
this event put the location on the east side of Ashtabula, within the cluster of events in
this area. Data for 1992 events recorded by JCU could not be recovered from original
data in time for this work. It would be beneficial for future work to be done using these
data in order to better define the epicentral locations olf these earthquakes and therefore to
determine the structural features that they are related to. By having a clearer picture of
which earthquakes are associated with Ashtabula seismicity and which earthquakes are
associated with the Akron Magnetic Lineament, a better understanding of the pattern of
earthquakes associated from induced mechanisms can be inferred. This would also serve
to reduce the apparent ‘scatter’ of epicentral locations by showing a clear division of
earthquakes associated with their respective structural featurés.

This work is important in the realm of earthquake-hazard reduction and

| mitigation. The abundance of earthquakes located in close proximity to a high-pressure
fluid injection well, in an area previously devoid of seismic activity, clearly demonstrates
fh_e dangers associated with high-pressure waste disposal. More research is needed to
investigate the role of fluids ih fault zones, and care should be taken in choosing sites for

waste-fluid injection. A thorough investigation and search for structural features such as
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hidden faults, especially in regions where the maximum horizontal stress is at or near
failure, must be conducted. To ignore this advice could prove to be disastrous and costly.
Although most earthquakes resulting from induced mechanisms are relatively small in
magnitude, a few large ones have been recorded around M 5.5 (Nicholson & Wesson,
1990). It may only be a matter of time before another earthquake of this magnitude
occurs due to fluid injection. As many ﬂuid_injection wells are located in or near large

cities, an earthquake of such large magnitude could be devastating,
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| etter designations for each earthquake
Date/Time

- 870713 05:49
870713 05:49

870713
870713

870716
- 010120
010120

010126
010126

010126
010126

010126
010126

010126
010126

010126
010126

010603
010605
010605

Table 9.

13:05
13:05

04:49
02:05
02:05

03:03
03:03

03:11
03:11

03:45
03:45

05:11
05:11

05:36
05:36

22:36

08:27
08:27

Latitude
41.93
41.95

41.93
41.97

- 41.90

41.88
41.85

41.93
41.87

41.93
41.86

41.93
41.86

41.93
41.87

41.97
41.86

41.87

-41.88

41.88

Longitude
-80.71
-80.45

-80.71
-80.67

-80.75
-80.77
-80.83

-80.72
-80.77

-80.72
-80.78

-80.72
-80.77

-80.72
-80.80

-80.69
-80.77

-.-80.77

-80.76
-80.80

Network
GSC orig
GSC reloc

GSC orig
GSC reloc

Master
GSC orig
GSC reloc

GSC orig
GSC reloc

GSC orig
GSC reloc

GSC orig
GSC reloc

GSC orig
GSC reloc

GSC orig
GSC reloc

Master
GSC orig
GSC reloc

Letter

oo M ™ mm X X OO0 ol w)

o i
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Letter designations for each earthquake

Date/Time
920315 06:13
920315 06:13

870713 05:49
870713 05:49

870713 05:58
870713 05:58

870713 07:52
870713 07:52

870713 13:05
870713 13:05

870713 18:25
870713 18:25

870713 19:00
870713 19:00

870713 19:39
870713 19:39

870713 20:53
870713 20:53

870713 23:49
870713 23:49

870714 07:47
870714 07:47
Table 9 cont.

Latitude
41.81
41.89

41.90
41.91

41.87
41.87

41.89
41.90

41.89
41.90

41.88
41.91

41.88
41.90

41.88
41.90

41.85
41.87

41.90
41.90

41.87
41.88

Longitude
-81.22
-80.76

-80.78
-80.76

-80.74
-80.70

-80.75
-80.75

-80.76
-80.75

-80.75
-80.73

-80.75

-80.75

-80.75
-80.75

-80.71
-80.71

-80.75
-80.75

-80.74

- -80.73

Network
GSC orig

- GSC reloc

JCU orig

JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

Letter

ONO) m mm OO ON®) @ @ > >

T
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Letter designations for each earthquake

Date/Time
870714 14:51
870714 14:51

870716 04:49
870716 04:49

870716 06:02
870716 06:02

890801 16:12
890801 16:12

890801 16:50
890801 16:50

890803 04:07
890803 04:07

900101 23:03
900101 23:03

900724 23:04
900724 23:04

900926 06:13
900926 06:13

901118 09:20
901118 09:20
Table 9 cont.

Latitude
41.88
41.89

41.90
41.90

41.88
41.90

41.88
41.90

41.89
41.89

41.90
41.90

41.96
41.89

41.92

- 41.98

41.92
41.91

41.92
41.92

Longitude
-80.73
-80.74

-80.75
-80.75

-80.75
-80.75

-80.75
-80.75

-80.75
-80.74

-80.76
-80.74

-80.84
-80.73

-80.85
-80.83

-80.72
-80.76

-80.77
-80.78

Network
JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

JCU orig
JCU reloc

OO WV 00 zZz ZTE rr

0

Letter
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Epicentral locations as determined by the LDEQO portable instruments.

Table 10.

Yrmoda origin lat. N lon. W depth rms. erh erz gapxmagfmag
87-17-14 1451 11.30  4154.19 80 44.92 1.95 0.01 0.6931.61260
87-7-14 1524 20.52 41 54.13° 80 45.08 229 000 0.601.58 262
87-7-15 736 26.09 41 54.00 80 44.74 340 001 1.80 1.25 52
87-7-15 91110.21 41 54.15 80 45.33 193 001 0.73 31.61 269
87-7-15 921 44.49 4154.11 80 45.07 191 0.00 0.6731.61262
87-17-15 930 53.22 41 55.00 80 44.49 482 046 5.4631.61272
- 87-7-15 1723457  4154.24 80 44.49 1.91 001 0.7931.61249

87-7-16 449 40.20 41 54.16 80 44.46 258 0.01 0.140.88157
87-7-16 453 32.88 41 54.26 80 44.63 1.99 004 0.2331.61165

- 87-7-16 453 46.10 41 54.13 | 80 44.44 257 0.01 0.150.90155
87-7-16 519 16.84 41 54.11 80 44.37 2.00 0.01 0.1531.61153
87-7-16 536 59.35 4] 54.11 80 44.22 1.73 001 0.130.09 151
87-7-16 556 38.65 41 54.09 80 44.52 2.78 0.0l 0.150.88 154
87-7-16 622 4.93 41 54.04 80 44.17 200 0.00 0.1431.61146
87-7-16 6421.18 41 54.12 80 44.27 242 0.01 0.140.83153
87-17-16 636 18.60 41 54.13. 80 44.59 267 0.01 0.15 0.59 158
87-7-16 719 37.91 41 54.12 80 44.21 255 0.01 0.150.87152
87-7-16 720 11.27 41 54.14 80 44.19 1.78 0.00 0.130.09 153
87-7-16 918 17.42 4154.16 80 44.20 202 0.09 0.4731.61154
87-7-16 921 17.69 41 54.13 80 44.36 292 0.00 0.150.83154
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Yrmoda origin lat. N lon. W depth rms. erh erz gapxmagfmag

87-7-16 1143 7.51 41 54.11 80 44.45 1.82  0.01 0.13 31.61 155
87-7-16 1554 50.51 41 54.17 80 44.47 200 0.01 0.1431.61158
87-17-16 1836 8.85 4154.16 80 44.59 326 0.01 0.170.88158
87-7-16 1911 43.74 41 54.18 80 44.54 2.60 0.00 0.380.90253
87-7-17 46129 41 54.10 80 44.81 275 0.01 0.14 0.85 158
87-7-17 46 10.95 41 54.11 ) 8044.71 310 0.01 0.160.88157
87-7-17 46 20.88 41 54.11 80 44.79 2.82 001 0.140.84 158
87-7-17 633 25.10 415415 804435 - 326 001 0.180.82156
87-7-17 648 48.45 41 54.11 80 44.40 320 0.01 0.170.91 154
87-7-17 923 42.44 41 54.09 80 44.48 3.38 0.01 0.170.85154
87-17-17 949 35.31 41 54.09 80 44.54 334 001 0.160.85154
87-17-17 2354 15.98 41. 54.16 80 44.58 283 0.01 0.150.87158
87-7-18 13941.35 41 54.10 8044.76 - 1.77 0.01 0.220.08 157
87-7-18 158 46.21 41 54.12 8044.72 - 273 0.01 0.140.88 157
87-7-18 626 15.22 41 54.17 8044.77 254 001 0.170091 161
87-17-19 623947 41 54.04 80 45.27 284 001 0.200.81158
87-7-19 15154158 415412  8044.90 248 0.00 0.240.80219
87-7-19 1540 0.16 41 54.09 80 44.47 252 001 0.140.82153
87-7-19 2124 1500 415422 8044.71 186 002 0.1631.61164
87-7-19 21372243 4154.13 80 44.57 175 001 0.160.08 157

Table 10 cont.
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Yrmoda origin lat. N lon. W depth rms. erherz gapxmagfmag

87-7-19

87-17-19

87-7-19

87-7-20

87-7-21

87-7-23

87-7-23

87-7-23

87-7-25

87-17-25

87-7-25

87-7-26

87- 7-26

87-7-26

89- 8-5

Table 10 cont.

2138 47.77

2224 0.07

2319 10.54

1718 26.37

939 32.64

629 44.70

827 41.17

1847 0.06

749 59.18

750 18.04

2225 51.11

351276

530 35.77

711 6.50

054 46.99

41 54.11

41 54.13

41 54.05

41 54.15

41 54.07

41 54.15

41 54.19

41 54.19

41 54.20

41 54.14

41 54.16

41 54.09

41 54.10

41 54.08

41 54.11

80 44.61
80 44.53
80 45.11
80 44.95
80 45.36
80 44.66
80 44.56
80 44.64
80 44.87
80 44.87
80 44.79
80 45.01
80 44.97
80 44.76

8045.10

2.45
2.33
2.15
2.27
2.83
2.23
2.62
2.31
2.0
2.26
2.23
2.18
2.32
1.79

2.80

0.01

0.01

0.01

0.02

0.01

0.01

0.01

0.01

0.03

0.01

0.01

0.00

0.01

0.01

0.01

0.14 0.98 156

0.130.87 156

0.310.97 232

0.38 1.09 242

0.220.81 160

0.150.40 159

0.140.42 160

0.150.44 162

0.34 1.11 227

0.230.67 218

0.14 042 161

0.130.50 159

0.130.49 159

0.110.06 156

0.150.55 161
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Appendix A

Average peak
velocity
(centimeters per
second)

1-2

5-8

8-12

20-30

45-55

More than 60

Intensity value and description

I. Not felt except by a very few under especially favorable circumstances.
(I Rossi-Forel scale)

11. Felt only by a few persons at rest, especially on upper floors of
buildings. Delicately suspended objects may swing.
{ to IT Rossi-Forel scale)

1. Felt quite noticeably indoors, especially on upper floors of buildings,
but many people do not recognize it as an earthquake. Standing
automobiles may rock slightly. Vibration like passing of truck. Duration
estimated.

(I Rossi-Forel scale)

IV. During the day felt indoors by many, outdoors by few. At night some
awakened. Dishes, windows, doors disturbed; walls make creaking sound.
Sensation like heavy truck striking building. Standing automobiles rocked
noticeably.

(IV to V Rossi-Forel scale)

V. Felt by nearly everyone, many awakened. Some dishes, windows, and
so on broken; cracked plaster in a few places; unstable objects overturned.
Disturbances of trees, poles, and other tall objects sometimes noticed.
Pendulum clocks may stop.

(V to VI Rossi-Forel scale)

VL. Felt by all, many frightened and run outdoors. Some heavy fumniture
moved; a few instances of fallen plaster and damaged chimneys. Damage
slight.

(VI to VII Rossi-Forel scale)

VII. Everybody runs outdoors. Damage negligible in buildings of good
design and construction; slight to moderate in well-built ordinary
structures; considerable in poorly built or badly designed structures; some
chimneys broken. Noticed by persons driving cars.

(VIII Rossi-Forel scale) » ’

VIHI. Damage slight in specially designed structures; considerable in
ordinary substantial buildings with partial collapse; great in poorly built
structures. Panel walls thrown out of frame structures. Fall of chimneys,
factory stack, columns, monuments, walls. Heavy fumniture overturned.
Sand and mud ejected in small amounts. Changes in well water. Persons
driving cars disturbed.

(VIII + to IX Rossi-Forel scale)

IX. Damage considerable in specially designed structures; well-designed
frame structures thrown out of plumb; great in substantial buildings, with
partial collapse. Buildings shifted off foundations. Ground cracked
conspicuously. Underground pipes broken.

(IX + Rossi-Forel scale)

X. Some well-built wooden structures destroyed; most masonry and frame
structures destroyed with foundations; ground badly cracked. Rails bent.
Landslides considerable from river banks and steep slopes. Shifted sand
and mud. Water splashed, slopped over banks.

(X Rossi-Forel scale)

XL Few, if any, (masonry) structures remain standing. Bridges destroyed.
Broad fissures in ground. Underground pipelines completely out of
service. Earth slumps and land slips in soft ground. Rails bent greatly.

XII. Damage total. Waves seen on ground surface. Lines of sight and level
distorted. Objects thrown into the air.

Average peak

acceleration (g is
gravity=9.80 meters
per second squared)

0.015g-0.02g

0.03g-0.04g

0.06g-0.07g

0.10g-0.15g

0.25g-0.30g

0.50g-0.55g

More than 0.60g
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Appendix B
Explanation of nomenclature:

mbLg: Magnitude (Determined from maximum amplitude of Lg waves)

Wave phases

P or Pn: P — wave in the mantle
S or Sn: S — wave in the mantle
Pg: P — wave in the crust

Sg: S — wave in the crust

Lg: Surface waves

From Appendix C

RMS: Root Mean Square

Sigma 1: The major axis of the error ellipse
Sigma 2: The minor axis of the error ellipse
Res: Residual time in seconds
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Run 1 Epi RE locator APPENDIX C
1989 August 01
2.9 mbLg event at 16:50

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

ler 41.667 -81.158 P 10.05a Y
ler 41.667 -81.158 S 10.19a Y
tom 41.692 -81.04759.86aY
tom 41.692 -81.047 P 10.04aY
ecl 41.547 -81.102P 10.09a Y
ecl 41.547 -81.102S9.98aY
men 41.684 -81.404 $10.03aY
men 41.684 -81.404P 10.29aY
che 41.561 -81.362S59.90aY

Sta Phas X Azi Res Res(nuEpi)
ler P 0.38 232.59 0 0.01

ler S0.38 232.590.14 0

tom S 0.3 226.78 -.19 -.03
tom P 0.3 226.78 -.01 -.01
ecl P 0.44 216.67 0.04 -.04
ecl S 0.44 216.67 -.07 -.07
men S 0.53 246.25 -.02 0.08
men P 0.53 246.25 0.24 0.05
che S 0.57 233.52-.150

RMS: 0.14

sigma 1: 1.19

sigma 2: 0.21

Original loc : 41.893 -80.75
New loc : 41.89 -80.74



Run 2 Epi RE locator
1989 August 01
2.8 mbLg event at 16:12

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 8.30 aY
che 41.561 -81.362 S5 8.04aY
ecl 41.547 -81.102P 7.97aY
ecl 41.547 -81.102S8.04aY
ler 41.667 -81.158 P 8.11aY
ler 41.667 -81.158S7.91aY
men 41.684 -81.404P 8.15aY
men 41.684 -81.404S7.97aY
tom 41.692 -81.047P 8.142aY
tom 41.692 -81.047 S8.08aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.23 0
che S 0.57 233.52-.03 0
eclP0.44 216.67-.10

ecl S 0.44 216.67 -.03 -.01
ler P 0.38 232.59 0.04 0

ler S 0.38 232.59 -.16 0
men P 0.53 246.25 0.08 0.01
men S 0.53 246.25 -.1 0.01
tom P 0.3 226.78 0.07 0
tom S 0.3 226.78 0.01 0

RMS: 0.12

sigma 1: 1.04

sigma 2: 0.17

Original loc : 41.88 -80.75
new loc : 41.90 -80.75
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Run 3 Epi RE IoCator
1989 August 03
2.2 mblLg event at 4:07

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

ler 41.667 -81.158 P 7.89aY
tom 41.692 -81.047 P 8.02 aY
ecl 41.547 -81.102 P 8.03 a Y
ecl 41.547 -81.102S 7.78 aY
che 41.561 -81.362S7.92aY

Sta Phas X Azi Res Res(nuEpi)
ler P 0.38 232.59 -.04 0.02
tom P 0.3 226.78 0.09 0.01
ecl P 0.44 216.67 0.1 -.01
ecl S 0.44 216.67 -.15-.03
che S 0.57 233.52 -.01 0.02

RMS: 0.14

sigma 1: 2.07

sigma 2: 0.29

Original loc: 41.90 -80.761
new loc: 41.90 -80.74
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Run 4 Epi RE locator
1987 July 14
2.8 mbLg event at 14:51

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561-81.362P 1.24aY
che 41.561 -81.362S 1.15aY
ecl 41.547 -81.10250.98aY
ecl 41.547 -81.102P 0.98 a Y
ler 41.667 -81.158 P 1.02aY
ler 41.667 -81.158 S1.51aY
men 41.684 -81.404S 1.16aY
men 41.684 -81.404P 1.16aY
tom 41.692 -81.047P 1.01aY
tom 41.692 -81.047 S 1.18aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.520.1 0

che S 0.57 233.52 0.01 0.01
ecl S 0.44 216.67 -.16 -.1

ecl P 0.44 216.67 -.16 -.07
ler P 0.38 232.59-.12 0

ler S 0.38 232.59 0.37 0.01
men S 0.53 246.25 0.02 0.13
men P 0.53 246.25 0.02 0.06
tom P 0.3 226.78 -.13 -.02
tom S 0.3 226.78 0.04 -.03

RMS: 0.17

sigma 1: 1.39

sigma 2: 0.23

original loc: 41.88 -80.73
new loc: 41.89 -80.74
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Run 5 Epi RE locator
1987 July 16 event at 6:02

Station/Lat./Long./Phase/Arrival time (s)/Used in soln. y/n

che 41.561 -81.362P 5.18 a Y
che 41.561 -81.362S 4.61aY
ecl 41.547 -81.102S4.60aY
ecl 41.547 -81.102P 4.70a Y
ler 41.667 -81.158 P4.73 a Y
ler 41.667 -81.158 S 4.62aY
men 41.684 -81.404P 4.75aY
men 41.684 -81.404S4.60aY
tom 41.692 -81.047 P 4.73aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.46 0.01
che §$ 0.57 233.52-.11 -.01
ecl S0.44 216.67 -.12 -.02
eclP 0.44 216.67 -.02 0

ler P 0.38 232.59 0.01 0.01
ler $ 0.38 232.59 -.1 -.01
men P 0.53 246.25 0.03 0.02
men S 0.53 246.25 -.12 0.01
tom P 0.3 226.78 0.01 O

RMS: 0.20

sigma 1: 1.73

sigma 2: 0.31

Original loc: 41.88 -80.75
new loc: 41.90 -80.75

70



Run 6 Epi RE locator
1987 July 13 event
2.4 mblLg event at 23:49

Stafion/Lat./Lbng./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 3.92aY
che 41.561 -81.362S4.05aY
ecl 41.547 -81.102P 3.94aY
ecl 41.547 -81.102S3.89aY
ler 41.667 -81.158 P 3.93 aY
ler 41.667 -81.158 S4.17aY
men 41.684 -81.404P 3.86aY
men 41.684 -81.404S3.88aY
tom 41.692 -81.047 S3.86aY
tom 41.692 -81.047P 3.94aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 -.02 0
che S 0.57 233.520.11 0
eclP 0.44 216.6700

ecl $0.44 216.67 -.050
ler P 0.38 232.59 -.01 0
ler $ 0.38 232.59 0.23 0
men P 0.53 246.25-.08 0
men S 0.53 246.25-.06 0
tom S$ 0.3 226.78 -.080
tomP 0.3 226.78 00

RMS: 0.11

sigma 1: 0.91

sigma 2: 0.15

original loc: 41.90 -80.75
new loc: 41.90 -80.75
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Run 7 Epi RE locator
1987 July 13
2.2 mbLg event at 20:53

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soin. y/n

che 41.561 -81.362S4.88aY
ecl 41.547 -81.102P 4.68aY
ecl 41.547 -81.102S4.51aY
ler 41.667 -81.158P 4.79aY
men 41.684 -81.404 P 5.02aY
tom 41.692 -81.047 P 4.79 a Y
tom 41.692 -81.047 5 4.64aY

Sta Phas X Azi Res Res(nuEpi)
che S 0.57 233.52 0.12 0.09
ecl P 0.44 216.67 -.08 -.13
ecl $0.44 216.67 -.25 -.22
ler P 0.38 232.59 0.03 0.06
men P 0.53 246.25 0.26 0.22
tom P 0.3 226.78 0.03 0

tom S 0.3 226.78 -.12 -.03

RMS: 0.06

sigma 1: 0.71

sigma 2: 0.11

original loc: 41.85 -80.71
new loc: 41.87 -80.71
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Run 8 Epi RE locator
1987 July 13
2.1 mbLg event at19:39

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41,561 -81.362P 8.56aY
che 41.561 -81.36258.49aY
ecl 41.547 -81.102P 8.53 aY
ecl 41.547 -81.102S8.41aY
ler 41.667 -81.158 P 8.60aY
men 41.684 -81.404S8.41aY
tom 41.692 -81.047P 8.61aY
tom 41.692 -81.047 S8.40a Y

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.06 0
che S 0.57 233.52-.010

ecl P 0.44 216.67 0.03 0.01
ecl $0.44 216.67 -.090

ler P 0.38 232.59 0.1 0

men S 0.53 246.25 -.09 -.01
tom P 0.3 226.78 0.11 0.01
tom S 0.3 226.78 -.1 0

RMS: 0.10

sigma 1: 0.88

sigma 2: 0.15

original loc: 41.88 -80.75
new loc: 41.90 -80.75
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iRun 9 Epi RE locator

11987 July 13
2.3 mbLg event at 19:00

station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362S7.72aY
ecl 41.547 -81.102P 7.68aY
ecl 41.547 -81.102 S 7.52aY
ler 41.667 -81.158 P7.70aY
men 41.684 -81.404P 7.69aY
men 41.684 -81.404S7.55aY
tom 41.692 -81.047 P 7.74aY
tom 41.692 -81.047 S7.59aY

Sta Phas X Azi Res Res(nuEpi)
che § 0.57 233.52 0.07 0

ecl P 0.44 216.67 0.03 -.01
ecl S 0.44 216.67 -.13 -.02
ler P 0.38 232.59 0.050

men P 0.53 246.25 0.04 0.01
men S 0.53 246.25 -.1 0.01
tom P 0.3 226.78 0.09 0
tom S 0.3 226.78 -.06 -.01

RMS: 0.10

sigma 1: 0.80

sigma 2: 0.15

original loc: 41.88 -80.75
new loc: 41.90 -80.75
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run 10 Epi RE locator

' 1987 July 13
2.8 mblLg event at 18:25

station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 6.03aY
che 41.561 -81.362S56.10aY
ecl 41.547 -81.102P 6.19a Y

ecl 41.547 -81.102S56.04aY

men 41.684 -81.404P 6.20aY
men 41.684 -81.404S6.15aY
tom 41.692 -81.047P 6.16aY
tom 41.692 -81.047 S6.18aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.4 0.39
che S 0.57 233.52 0.47 0.63
ecl P 0.44 216.67 0.56 0.36
ecl S0.44 216.67 0.41 0.59
men P 0.53 246.25 0.57 0.4
men S 0.53 246.25 0.52 0.65
tom P 0.3 226.78 0.53 0.38
tom S 0.3 226.78 0.55 0.62

RMS: 0.19

sigma 1: 1.54

sigma 2: 0.29

original loc: 41.88 -80.75
new loc: 41.91 -80.73
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Run 11 Epi RE locator
1987 July 13
2.9 mbLg event at 13:05

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 2.87aY
che 41.561 -81.362S52.70aY
ecl 41.547 -81.102P 2.70aY

ecl 41.547 -81.102S2.65aY

men 41.684 -81.404P 2.70aY
men 41.684 -81.404S52.58aY
tom 41.692 -81.047 P 2.77 aY
tom 41.692 -81.047S2.59aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.17 0
che S 0.57 233.52 0 -.01

ecl P 0.44 216.67 0 0.01

ecl $0.44 216.67 -.050

men P 0.53 246.25 0 -.01
men S 0.53 246.25 -.12 -.03
tom P 0.3 226.78 0.07 0

tom S 0.3 226.78 -.11 -.01

RMS: 0.11

sigma 1: 0.89

sigma 2: 0.17

original loc: 41.89 -80.76
new loc: 41.90 -80.75
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Run 12 Epi RE locator
1987 July 13
3.0 mbLg event at 07:52

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 2,23 a Y
che 41.561-81.36252.22aY
ecl 41,547 -81.102P 2.20a Y

ecl 41.547 -81.102S 2.14a Y

men 41.684 -81.404 P 2.13 a Y
men 41.684 -81.404 S 2.02 a Y
tom 41.692 -81.047 P 2.13a Y
tom 41.692 -81.047 S 2.07a Y

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.09 0
che S 0.57 233.52 0.08 0

ecl P 0.44 216.67 0.06 0.03
ecl $0.44 216.67 0 0.04
men P 0.53 246.25 -.01 -.02
men S 0.53 246.25 -.12 -.05
tom P 0.3 226.78 -.01 0.01
tom S 0.3 226.78 -.07 0.01

RMS: 0.08

sigma 1: 0.65

sigma 2: 0.12

original loc: 41.89 -80.75
new loc: 41.90 -80.75



Run 13 Epi RE locator

1987 July 13
2.2 mblLg event at 5:58

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 12.22aY
che 41.561-81.362S 12,53 ay
ecl 41.547 -81.102P11.71aY
ecl 41.547 -81.102S 12.22aY
ler 41.667 -81.158 P 12.15aY
ler 41.667 -81.158 S12.50aY
tom 41.692 -81.047 P 12.05aY
tom 41.692 -81.047S12.29aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.01 0.07
che § 0.57 233.52 0.32 0.14
ecl P 0.44 216.67 -.5 -.16

ecl $0.44 216.67 0.01 -.25
ler P 0.38 232.59 -.06 0.07
ler S0.38 232.59 0.29 0.14
tom P 0.3 226.78 -.16 -.01
tom S 0.3 226.78 0.08 -.01

RMS: 0.24

sigma 1: 3.16

sigma 2: 0.37

original loc: 41.88 -80.69
new loc: 41.87 -80.70
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" Run 14 Epi RE locator

1987 July 13
3.8 mbLg event at 05:49

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561-81.362P 8.83aY
‘che 41.561-81.36258.93aY
ecl 41.547 -81.102P 8.74a Y

ecl 41.547 -81.10258.83 a Y

men 41.684 -81.404 P 8.25a Y
men 41.684 -81.404 S 8.67 a Y
tom 41.692 -81.047 P 8.73 a Y
tom 41.692 -81.047 S 8.60 a Y

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.13 -.01
che S 0.57 233.52 0.23 -.01
ecl P 0.44 216.67 0.04 0.06
ecl S0.44 216.67 0.13 0.12
men P 0.53 246.25 -.45 -.08
men S 0.53 246.25 -.03 -.15
tom P 0.3 226.78 0.03 0.01
tom S 0.3 226.78 -.1 0.04

RMS: 0.22

sigma 1: 1.86

sigma 2: 0.35

original loc: 41.90 -80.78
new loc: 41.91 -80.76
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Run 15 Epi RE locator

1987 July 14
2.4 mbLg event at 07:47

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 6.59aY
che 41.561 -81.36256.39aY
ecl 41.547 -81.102P 6.37aY
ecl 41.547 -81.102S 6.24aY
ler 41.667 -81.158 P 6.40aY
ler 41.667 -81.158 S6.55aY
men 41.684 -81.404P 6.59aY
men 41.684 -81.404S56.49aY
tom 41.692 -81.047P 6.44aY
tom 41.692 -81.047 S6.14aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.17 0.01
che S 0.57 233.52 -.03 0.01 -
eclP 0.44 216.67 -.05 -.09
ecl $0.44 216.67 -.18 -.16
ler P 0.38 232.59 -.02 0.01
ler S 0.38 232.59 0.13 0.01
men P 0.53 246.25 0.17 0.1
men S 0.53 246.25 0.07 0.18
tom P 0.3 226.78 0.02 -.02
‘tom S 0.3 226.78 -.28 -.06

RMS: 0.13

sigma 1: 1.05

sigma 2: 0.18

original loc: 41.87 -80.74
new loc: 41.88 -80.73
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Run 16 Epi RE locator

1990 January 01
2.2 mbLg event at 23:03

station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 4.34aY
che 41.561 -81.362S4.40aY
ecl 41.547 -81.102P 4.31aY
ecl 41.547 -81.102S53.94aY
ler 41.667 -81.158 P4.07 aY
ler 41.667 -81.158 S4.87aY
men 41.684 -81.404 P 401 aY
tom 41.692 -81.047P 4.10aY
tom 41.692 -81.047 S4.84aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.02 0.01
che S 0.57 233.52 0.08 0.04
ecl P 0.44 216.67 -.01 -.06
ecl $0.44 216.67 -.38 -.08
ler P 0.38 232.59 -.25 0.01
ler S 0.38 232.59 0.55 0.04
men P 0.53 246.25 -.31 0.06
tom P 0.3 226.78 -.22 -.02
tom S 0.3 226.78 0.52 -.01

RMS: 0.38

sigma 1: 4.20

sigma 2: 0.58

original loc: 41.96 -80.84
new loc: 41.89 -80.73
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" Run 17 Epi RE locator

1990 July 24
2.3 mblLg event at 23:04

Station/Lat./Long./Phase/Arrival timé (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 6.60aY
che 41.561 -81.362S5.98aY
men 41.684 -81.404P 6.35aY
men 41.684 -81.404S5.69aY
tom 41.692 -81.047P 6.82aY
tom 41.692 -81.047S6.92aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.21 0.11
che S 0.57 233.52 -.41 0.16
men P 0.53 246.25 -.04 -.29
men S 0.53 246.25 -.7 -.63
tomP 0.3 226.78 0.43 0.27
tom S 0.3 226.78 0.53 0.47

RMS: 0.38

sigma 1: 4.83

sigma 2: 0.68

original loc: 41.92 -80.85
new loc: 41.98 -80.83

-t
[y
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‘Run 18 Epi RE locator
1990 September 26
2.3 mbLg event at 06:13

station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 4.62aY
che 41.561 -81.36255.36a Y
ecl 41.547 -81.102P 4.63 a Y
ecl 41.547 -81.102 S 5.36 a Y
" men 41.684 -81.404P 443 aY
men 41.684 -81.404S5.13aY
tom 41.692 -81.047 P 4.78 a Y
tom 41.692 -81.047 S5.10a Y

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 -.31 -.03
che S 0.57 233.52 0.43 0.01
ecl P 0.44 216.67 -.3 0.04
ecl $0.44 216.67 0.43 0.11
men P 0.53 246.25 -.5 -.09
men S 0.53 246.25 0.2 -.11
tom P 0.3 226.78 -.15 -.01
tom S 0.3 226.78 0.17 0.05

RMS: 0.39

sigma 1: 3.28

sigma 2: 0.62

original loc: 41.92 -80.72
new loc: 41.91 -80.76
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Run 19 Epi RE locator
1990 November 18
2.3 mbLg event at 09:20

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

che 41.561 -81.362P 12.32aY
che 41.561 -81.362 S 12.32aY
ecl 41.547 -81.102P 12.13aY

ecl 41.547 -81.102 S 12.52aY

men 41.684 -81.404P 1247 aY
men 41.684 -81.404S11.63aY
tom 41.692 -81.047 P 12.18aY
tom 41.692 -81.047 S 12.32aY

Sta Phas X Azi Res Res(nuEpi)
che P 0.57 233.52 0.08 -.02
che S 0.57 233.52 0.08 -.03
eclP0.44 216.67 -.11 0.13
ecl S0.44 216.67 0.28 0.21
men P 0.53 246.25 0.23 -.14
men S 0.53 246.25 -.61 -.28
tom P 0.3 226.78 -.06 0.03
tom S 0.3 226.78 0.08 0.06

RMS: 0.26

sigma 1: 2.17

sigma 2: 0.41

original loc: 41.92 -80.77
new loc: 41.92 -80.78
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- Run 1G Epi RE locator
1987 July 13
2.4mblLg event at 23:49

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

dla 42.858 -81.573 Pg 3.84 a Y
dia 42.858 -81.573 Sg 3.88 a Y
ldn 43.04 -81.183 Pg3.97aY
ldn 43.04 -81.183 Sg3.92aY
elf 43.193 -81.315Pg 3.93aY
elf 43.193 -81.315Sg 3.76 aY
weo 44.016 -78.374P 3.90aY
weo 44.016 -78.374 Sg 3.74aY

Sta Phas X Azi Res Res(nuEpi)
dlaPg 1.13 327.97 -.03 0.03
dla Sg 1.13 327.97 0.01 0.04
Ildn Pg 1.18 344.55 0.1 0.01
Ildn Sg 1.18 344.55 0.05 0.01
elf Pg 1.36 342.41 0.06 0.01
elf Sg 1.36 342.41 -.11 0.01
weo P 2.74 38.51 0.03 -.03
weo Sg 2.74 38.51 -.13 -.07

RMS: 0.09

sigma 1: 0.33

sigma 2: 0.15

~original loc: 41.93 -80.71
new loc: 41.90 -80.75
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i

| Run2g

. 870713 13:05
2.9 mbLg event

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

ldn 43.04 -81.183P2.88b Y

Idn 43.04 -81.183S3.28b Y

elf 43.193 -81.315P2.89b Y
elf 43.193 -81.315S52.68b Y
weo 44.016 -78.374P 291 b Y
weo 44.016 -78.374 S 10.67dn

Sta Phas X Azi Res Res(nuEpi)
l[dn P 1.18 344.55-.050
ldn S 1.18 344,55 0.350
elf P 1.36 342.41 -.04 0
elf S 1.36 342.41 -.250
weo P 2.74 38.51-.02 0

RMS: 0.31
latt: 41.90
long: -80.75



A 4 e Syl bt npin

Run 49
2001 January 26 03:45

2.2 mbLg event

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

tyno 43.095 -79.87 5g 1.58 a Y

rd03 41.183 -79.944 Sg 2.52 a Y

rd04 43.152 -79.699 Sg 2.12a Y

rd02 43.315-79.877 Sg3.12aY

efo 43.092-79.312Pg2.43aY

efo 43.092 -79.312Sg 2.57 aY

rd01 43.411 -79.836 Sg 3.52 aY ;
brco 44.244 -81.442 Sg 2.29 a Y

Sta Phas X Azi Res Res(nuEpi)
tyno Sg 1.4 27.87 -.940
rd03 Sg 0.92 137.42 0 -.01
rd04 Sg 1.51 30.98 -.4 0
rd02 Sg 1.6 23.94 0.6 0

efo Pg 1.63 40.52 -.09 0

efo Sg 1.63 40.52 0.05 0
rd01 Sg1.723.510

brco Sg 2.43 348.63 -.23 -.01

RMS: 0.70
sigma 1: 2.22
sigma 2: 1.02
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Run 59
2001 January 26 03:11

2.0 mbLg event -

station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

tyno 43.095 -79.87 Pg 1.87 aY
tyno 43.095 -79.87 Sg 2.69 a Y
rd03 41.183 -79.944 Pg 2.44 a Y
rd03 41.183 -79.944 Sg 2.82a Y
rd04 43.152 -79.699 Pg 4.30 a Y
rd04 43.152 -79.699 Sg 2.23 a Y
efo 43.092 -79.312Pg2.29 aY
efo 43.092 -79.3125g 3.56 a Y
stco 43.208 -79.171 S 3.85aY
brco 44.244 -81.442 Sg 2.50a Y

Sta Phas X Azi Res Res(nuEpi)
tyno Pg 1.4 27.87 -.99 -.03
tyno Sg 1.4 27.87 -.17 0.02
rd03 Pg 0.92 137.42 -.42 -.03
rd03 Sg 0.92 137.42 -.04 0.03
rd04 Pg 1.51 30.98 1.44 -.03
rd04 Sg 1.51 30.98 -.63 0.02
efoPg 1.63 40.52 -.57 -.01
efo Sg 1.63 40.52 0.7 0.05
stco S 1.79 40.51 0.99 0.05
brco Sg 2.43 348.63 -.36 -.13

RMS: 0.88
sigma 1: 2.42
sigma 2: 1.32
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Run 69
2001 January 26 03:03

4.5 mblLg event

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

tyno 43.095-79.87Pg4.41 aY

tyno 43.095-79.875g4.48aY

rd03 41.183 -79.944 Pg4.55aY
rd03 41.183 -79.944 Sg 4.71aY
rd04 43.152 -79.699 Pg4.35aY
rd04 43.152 -79.699 Sg4.32aY
rd02 43.315-79.877Pg4.36aY
rd02 43.315-79.877 Sg4.26 a Y

efo 43.092 -79.312Sg4.87aY

rd01 43.411 -79.836 Pg4.34aY
rd01 43.411 -79.836 Sg 4.04aY
stco 43.208 -79.171 P 4.47aY
stco 43.208 -79.171 S4.97aY
acto 43.609 -80.063 P4.37aY
brco 44.244 -81.442 Sg 3.77 a Y

Sta Phas X Azi Res Res(nuEpi)
tyno Pg 1.39 27.34 -.01 -.04
tyno Sg 1.39 27.34 0.06 -.05
rd03 Pg 0.91 138.12 0.13 0.28
rd03 Sg 0.91 138.12 0.29 0.52
rd0O4 Pg 1.51 30.5 -.07 -.03
rd04 Sg 1.51 30.5 -.1 -.02
rd02 Pg 1.59 23.46 -.06 -.06
rd02 Sg 1.59 23.46 -.16 -.09
efo Sg 1.62 40.14 0.45 0.09
rdO1 Pg 1.69 23.05 -.08 -.08
rd01 Sg 1.69 23.05 -.38 -.09
stcoP 1.78 40.16 0.05 0.04
stco S 1.78 40.16 0.55 0.09
actoP 1.82 15.81 -.05-.13
brco Sg 2.44 348.3 -.65 -.43

RMS: 0.22
sigma 1: 0.61
sigma 2: 0.27
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Run 79
2001 January 20 02:05

2.6 mbLg event
Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

tyno 43.095 -79.87 Pg 1.86 an
tyno 43.095-79.87 Sg 1.65an
rd03 41.183 -79.944 Pg 5.71 aY
rd03 41.183 -79.944 Sg 6.54 aY
rd04 43.152 -79.699 Pg 5.61 aY
rd04 43.152 -79.699 Sg 5.99aY
rd02 43.315 -79.877 Pg 6.22 aY
rd02 43.315-79.877 Sg 6.36 aY
efo 43.092 -79.312Pg 6.20aY
efo 43.092 -79.312Sg 6.94 ay
rd01 43.411 -79.836 Pg 6.73 a Y
rd01 43.411 -79.836 Sg 6.41 aY
stco 43.208 -79.171P6.40aY
acto 43.609 -80.063 P597aY -
acto 43.609 -80.063 Sg 6.11aY
brco 44.244 -81.442 Sg 5.56 a Y

Sta Phas X Azi Res Res(nuEpi)
rd03 Pg 0.92 137.42 -.48 0.13
rd03 Sg 0.92 137.42 0.35 0.28
rd0O4 Pg 1.51 30.98 -.58 -.01
rd04 Sg 1.51 30.98 -.2 0.03
rd02 Pg 1.6 23.94 0.03 -.03
rd02 Sg 1.6 23.94 0.17 -.02
efo Pg 1.63 40.52 0.01 0.04
efo Sg 1.63 40.52 0.75 0.1
rd01 Pg 1.7 23.5 0.54 -.03
rd01 Sg 1.7 23.5 0.22 -.02
stco P 1.79 40.51 0.21 0.04
actoP 1.82 16.24 -.22 -.07
acto Sg 1.82 16.24 -.08 -.06
brco Sg 2.43 348.63 -.63 -.26

RMS: 0.40
latt: 41.86
long: -80.79



1992 run 8G
920315 06:13

Station/Lat./Long./Phase/Arrival time (s)/Quality/Used in soln. y/n

dla 42.858 -81.573 Pg 16.13 b Y
Idn 43.04 -81.183 Pg 17.59b Y
Idn 43.04 -81.183 Sg 18.20b Y
elf 43.193 -81.315Pg17.0b Y
elf 43.193 -81.315Sg 17.16 b Y
weo 44.016 -78.374 P 16.79b Y
weo 44.016 -78.374 S 23.65 b n

Sta Phas X Azi Res Res(nuEpi)
dlaPg 1.13 327.97 -1.02 -.09
Idn Pg 1.18 344.55 0.44 -.02
Idn Sg 1.18 344.55 1.05 0.06
elf Pg 1.36 342.41 -.15 -.03

elf Sg 1.36 342.41 0.01 0.05
weo P 2.74 38.51 -.36 0.04

RMS: 0.86
latt: 41.89
long: -80.76
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